On Distributionally Robust Chance Constrained Program with Wasserstein Distance

Weijun Xie

ISE, Virginia Tech

Mathematical Optimization of Systems Impacted by Rare, High-Impact Random Events, Jun 24 - 28, 2019

▲ロト ▲団ト ▲ヨト ▲ヨト 三国 - のへで

Distributionally Robust Chance Constrained Program (DRCCP) Consider DRCCP as

$$v^* = \min_{x} c^{\top} x$$

s.t. $x \in S$
 $\tilde{A}x \ge \tilde{b}$

(objective function) (deterministic constraints) e.g., nonnegativity (uncertain inequalities)

< ∃ >

Distributionally Robust Chance Constrained Program (DRCCP) Consider DRCCP as

 $\begin{aligned} v^* &= & \min_{x} \quad c^\top x \\ & \text{s.t.} \quad x \in S \\ & \inf_{\mathbb{P} \in \mathcal{P}} \mathbb{P}\{\tilde{A}x \geq \tilde{b}\} \geq 1 - \epsilon \end{aligned}$

(objective function) (deterministic constraints) e.g., nonnegativity (chance constraint)

4 **A b b b b b b**

where

- $\epsilon \in (0, 1)$ is risk parameter
- "Ambiguity Set" $\mathcal{P} = a$ family of probability distributions

Distributionally Robust Chance Constrained Program (DRCCP) Consider DRCCP as

$$v^* = \min_{x} c^\top x$$
 (objective function)
s.t. $x \in S$ (deterministic constraints
e.g., nonnegativity

$$\inf_{\mathbb{P}\in\mathcal{P}} \mathbb{P} \left\{ \begin{matrix} \tilde{a}_1^\top x \ge \tilde{b}_1 \\ \vdots \\ \tilde{a}_m^\top x \ge \tilde{b}_m \end{matrix} \right\} \ge 1 - \epsilon \qquad \text{(chance constraint)}$$

where

- $\epsilon \in (0, 1)$ is risk parameter
- "Ambiguity Set" $\mathcal{P} = a$ family of probability distributions
- m = 1: single DRCCP; m > 1: joint DRCCP

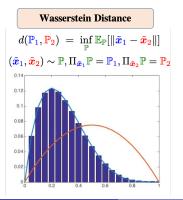
Xie (Virginia Tech)

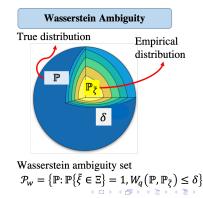
Wasserstein Ambiguity Set

Wasserstein ambiguity set (Esfahani and Kuhn 2015; Zhao and Guan, 2015; Gao and Kleywegt, 2016; Blanchet and Murthy, 2016)

$$\mathcal{P}^{W} = \left\{ \mathbb{P} : W_{q}\left(\mathbb{P}, \mathbb{P}_{\tilde{\boldsymbol{\zeta}}}\right) \leq \delta \right\},\,$$

where $W_q\left(\mathbb{P}, \mathbb{P}_{\tilde{\zeta}}\right)$ = Wasserstein distance between probability distribution \mathbb{P} and empirical distribution $\mathbb{P}_{\tilde{\zeta}}$.





Xie (Virginia Tech)

Wasserstein Ambiguity Set

Wasserstein ambiguity set (Esfahani and Kuhn 2015; Zhao and Guan, 2015; Gao and Kleywegt, 2016; Blanchet and Murthy, 2016)

$$\mathcal{P}^{W} = \left\{ \mathbb{P} : W_{q}\left(\mathbb{P}, \mathbb{P}_{\tilde{\zeta}}\right) \leq \delta \right\},\$$

where $W_q\left(\mathbb{P}, \mathbb{P}_{\tilde{\zeta}}\right)$ = Wasserstein distance between probability distribution \mathbb{P} and empirical distribution $\mathbb{P}_{\tilde{\zeta}}$.

• Convergence in probability to regular chance constrained program (CCP)

DRCCP with Wasserstein Ambiguity Set (DRCCP-W): Existing Works

DRCCP-W set

with

$$Z = \left\{ x : \inf_{\mathbb{P} \in \mathcal{P}^W} \mathbb{P} \left\{ \tilde{A}x \ge \tilde{b} \right\} \ge 1 - \epsilon \right\},$$
$$\mathcal{P}^W = \left\{ \mathbb{P} : W_q \left(\mathbb{P}, \mathbb{P}_{\tilde{\zeta}} \right) \le \delta \right\}.$$

Hanasusanto et al. (2015) and X. and Ahmed (2017) showed that DRCCP-W is a biconvex program.

DRCCP with Wasserstein Ambiguity Set (DRCCP-W): Existing Works

DRCCP-W set

$$Z = \left\{ x : \inf_{\mathbb{P} \in \mathcal{P}^{W}} \mathbb{P} \left\{ \tilde{A}x \ge \tilde{b} \right\} \ge 1 - \epsilon \right\},$$

with $\mathcal{P}^{W} = \left\{ \mathbb{P} : W_{q}\left(\mathbb{P}, \mathbb{P}_{\tilde{\zeta}}\right) \le \delta \right\}.$

- ► Hanasusanto et al. (2015) and **X.** and Ahmed (2017) showed that DRCCP-W is a biconvex program.
- ► X. and Ahmed (2017) proposed a bicriteria approximation algorithm for a special family of DRCCP-W

DRCCP-W: Summary of Contributions

DRCCP-W set

$$Z = \left\{ x : \inf_{\mathbb{P} \in \mathcal{P}^W} \mathbb{P} \left\{ \tilde{A}x \ge \tilde{b} \right\} \ge 1 - \epsilon \right\}.$$

• DRCCP-W \equiv conditional-value-at-risk (CVaR) constrained optimization

- Develop inner and outer approximations
- ► DRCCP-W set Z is mixed integer program representable
 - □ With big-M coefficients and additional binary variables
- ▶ Binary DRCCP-W set (i.e., $S \subseteq \{0,1\}^n$) is submodular constrained
 - □ Without big-M coefficients and additional binary variables
 - Solvable by Branch and Cut

Outline

- CVaR Reformulation and Related Approximations
- Mixed Integer Program Reformulation
- ► Binary DRCCP-W and Submodularity
- Concluding Remarks

CVaR Reformulation and Related Approximations

CVaR Reformulation

DRCCP-W set

$$Z = \left\{ x : \inf_{\mathbb{P} \in \mathcal{P}^{W}} \mathbb{P} \left\{ \tilde{A}x \ge \tilde{b} \right\} \ge 1 - \epsilon \right\},\$$

with $\mathcal{P}^W = \Big\{ \mathbb{P} : W_q \left(\mathbb{P}, \mathbb{P}_{\tilde{\boldsymbol{\zeta}}} \right) \leq \delta \Big\}.$

Theorem (Exact Formulation)

$$Z = \left\{ x : \frac{\delta}{\epsilon} + \mathbf{CVaR}_{1-\epsilon} \left[-f(x, \tilde{\zeta}) \right] \le 0 \right\},$$

where
$$f(x, \boldsymbol{\zeta}) := \min_{i \in [m]} \inf_{\substack{a_i^\top x < b_i \\ \gamma}} \|(a_i, b_i) - (a_i^{\gamma}, b_i^{\gamma})\|$$
 and
 $\mathbf{CVaR}_{1-\epsilon} \left[\tilde{X}\right] = \min_{\gamma} \left\{ \gamma + \frac{1}{\epsilon} \mathbb{E}_{\mathbb{P}} \left[\tilde{X} - \gamma\right]_+ \right\}.$

A (1) > A (1) > A

CVaR Reformulation

DRCCP-W set

$$Z = \left\{ x : \inf_{\mathbb{P} \in \mathcal{P}^W} \mathbb{P} \left\{ \tilde{A} x \ge \tilde{b} \right\} \ge 1 - \epsilon \right\},\$$

with $\mathcal{P}^W = \left\{ \mathbb{P} : W_q\left(\mathbb{P}, \mathbb{P}_{\tilde{\boldsymbol{\zeta}}}\right) \leq \delta \right\}.$

Theorem (Exact Formulation)

$$Z = \left\{ x : \frac{\delta}{\epsilon} + \mathbf{CVaR}_{1-\epsilon} \left[-f(x, \tilde{\boldsymbol{\zeta}}) \right] \le 0 \right\},\$$

where
$$f(x, \boldsymbol{\zeta}) := \min_{i \in [m]} \inf_{\substack{a_i^\top x < b_i \\ \gamma}} \|(a_i, b_i) - (a_i^{\boldsymbol{\zeta}}, b_i^{\boldsymbol{\zeta}})\|$$
 and
 $\mathbf{CVaR}_{1-\epsilon} \left[\tilde{X}\right] = \min_{\gamma} \left\{ \gamma + \frac{1}{\epsilon} \mathbb{E}_{\mathbb{P}} \left[\tilde{X} - \gamma\right]_+ \right\}.$

Proof Idea: (1) strong duality of distributionally robust optimization, and (2) break down the indicator function.

Xie (Virginia Tech)

DRCCP with Wasserstein Distance

June 26, 2019 8 / 27

CVaR Reformulation: Worst-case Interpretation

Theorem (Exact Formulation)

$$Z = \left\{ x : \frac{\delta}{\epsilon} + \mathbf{CVaR}_{1-\epsilon} \left[-f(x, \tilde{\boldsymbol{\zeta}}) \right] \le 0 \right\},\$$

where $f(x, \boldsymbol{\zeta}) := \min_{i \in [m]} \inf_{a_i^\top x < b_i} \|(a_i, b_i) - (a_i^{\boldsymbol{\zeta}}, b_i^{\boldsymbol{\zeta}})\|$

Original empirical samples

$$\blacktriangleright N = 6, \epsilon = 1/3$$

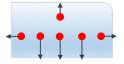
CVaR Reformulation: Worst-case Interpretation

Theorem (Exact Formulation)

$$Z = \left\{ x : \frac{\delta}{\epsilon} + \mathbf{CVaR}_{1-\epsilon} \left[-f(x, \tilde{\boldsymbol{\zeta}}) \right] \le 0 \right\},\$$

where $f(x, \boldsymbol{\zeta}) := \min_{i \in [m]} \inf_{a_i^\top x < b_i} \|(a_i, b_i) - (a_i^{\boldsymbol{\zeta}}, b_i^{\boldsymbol{\zeta}})\|$

Original empirical samples



Moving these samples to boundary of violating constraints

$$\blacktriangleright N=6, \epsilon=1/3$$

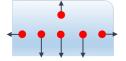
CVaR Reformulation: Worst-case Interpretation

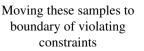
Theorem (Exact Formulation)

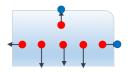
$$Z = \left\{ x : \frac{\delta}{\epsilon} + \mathbf{CVaR}_{1-\epsilon} \left[-f(x, \tilde{\boldsymbol{\zeta}}) \right] \le 0 \right\},\$$

where $f(x, \boldsymbol{\zeta}) := \min_{i \in [m]} \inf_{a_i^\top x < b_i} \|(a_i, b_i) - (a_i^{\boldsymbol{\zeta}}, b_i^{\boldsymbol{\zeta}})\|$

Original empirical samples







Due to chance constraint, only limited scenarios can be moved

$$\blacktriangleright N=6, \epsilon=1/3$$

DRCCP-W set

$$Z = \left\{ x : \frac{\delta}{\epsilon} + \mathbf{CVaR}_{1-\epsilon} \left[-f(x, \tilde{\boldsymbol{\zeta}}) \right] \le 0 \right\},\$$

where $f(x, \boldsymbol{\zeta}) := \min_{i \in [m]} \inf_{a_i^\top x < b_i} \|(a_i, b_i) - (a_i^{\boldsymbol{\zeta}}, b_i^{\boldsymbol{\zeta}})\|.$

DRCCP-W set

$$Z = \left\{ x : \frac{\delta}{\epsilon} + \mathbf{CVaR}_{1-\epsilon} \left[-f(x, \tilde{\boldsymbol{\zeta}}) \right] \le 0 \right\},$$

where $f(x, \boldsymbol{\zeta}) := \min_{i \in [m]} \frac{\max\left\{ (a_i^{\zeta})^\top x - b_i^{\zeta}, 0 \right\}}{\|(x, 1)\|_*}.$

Xie (Virginia Tech)

< ∃⇒

A.

DRCCP-W set

$$Z = \left\{ x : \frac{\delta}{\epsilon} \| (x, 1) \|_* + \mathbf{CVaR}_{1-\epsilon} \left[-\widehat{f}(x, \widetilde{\boldsymbol{\zeta}}) \right] \le 0 \right\},$$

where $\widehat{f}(x, \boldsymbol{\zeta}) := \min_{i \in [m]} \max \left\{ (a_i^{\zeta})^\top x - b_i^{\zeta}, 0 \right\}.$

By positive homogeneity of coherent risk measures

DRCCP-W set

$$Z = \left\{ x : \frac{\delta}{\epsilon} \| (x, 1) \|_* + \mathbf{CVaR}_{1-\epsilon} \left[-\widehat{f}(x, \widetilde{\boldsymbol{\zeta}}) \right] \le 0 \right\},$$

where $\widehat{f}(x, \boldsymbol{\zeta}) := \max \left\{ \min_{i \in [m]} \left[(a_i^{\boldsymbol{\zeta}})^\top x - b_i^{\boldsymbol{\zeta}} \right], 0 \right\}.$

- By positive homogeneity of coherent risk measures
- Switch minimax to maximin

Outer Approximation Note

$$\begin{aligned} \mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right) \geq \mathbf{VaR}_{1-\epsilon}\left(\tilde{X}\right) &:= \min\left\{s: F_{\tilde{X}}(s) \geq 1-\epsilon\right\}. \end{aligned}$$
Replace
$$\mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right) \text{ by } \mathbf{VaR}_{1-\epsilon}\left(\tilde{X}\right). \end{aligned}$$

Theorem (Outer Approximation)

$$Z = \left\{ x : \frac{\delta}{\epsilon} \| (x, 1) \|_* + \mathbf{CVaR_{1-\epsilon}} \left[-\widehat{f}(x, \widetilde{\boldsymbol{\zeta}}) \right] \le 0 \right\}$$

where $\widehat{f}(x, \boldsymbol{\zeta}) := \max \left\{ \min_{i \in [m]} \left[(a_i^{\zeta})^\top x - b_i^{\zeta} \right], 0 \right\}.$

a

-∢ ≣⇒

Outer Approximation Note

$$\begin{aligned} \mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right) \geq \mathbf{VaR}_{1-\epsilon}\left(\tilde{X}\right) &:= \min\left\{s: F_{\tilde{X}}(s) \geq 1-\epsilon\right\}. \end{aligned}$$
Replace
$$\mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right) \text{ by } \mathbf{VaR}_{1-\epsilon}\left(\tilde{X}\right). \end{aligned}$$

Theorem (Outer Approximation)

$$Z \subseteq Z_{\mathbf{VaR}} = \left\{ x : \frac{\delta}{\epsilon} \| (x, 1) \|_* + \mathbf{VaR_{1-\epsilon}} \left[-\widehat{f}(x, \widetilde{\boldsymbol{\zeta}}) \right] \le 0 \right\}$$

where $\widehat{f}(x, \boldsymbol{\zeta}) := \max \left\{ \min_{i \in [m]} \left[(a_i^{\zeta})^\top x - b_i^{\zeta} \right], 0 \right\}.$

AP < B >

Outer Approximation

Note

$$\begin{aligned} \mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right) \geq \mathbf{VaR}_{1-\epsilon}\left(\tilde{X}\right) &:= \min\left\{s: F_{\tilde{X}}(s) \geq 1-\epsilon\right\}. \end{aligned}$$
Replace
$$\mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right) \text{ by } \mathbf{VaR}_{1-\epsilon}\left(\tilde{X}\right). \end{aligned}$$

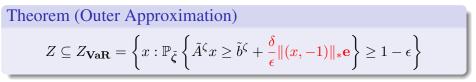
Theorem (Outer Approximation) $Z \subseteq Z_{\mathbf{VaR}} = \left\{ x : \mathbb{P}_{\tilde{\zeta}} \left\{ \tilde{A}^{\zeta} x \ge \tilde{b}^{\zeta} + \frac{\delta}{\epsilon} \| (x, -1) \|_{*} \mathbf{e} \right\} \ge 1 - \epsilon \right\}$

Outer Approximation

Note

$$\mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right) \geq \mathbf{VaR}_{1-\epsilon}\left(\tilde{X}\right) := \min\left\{s: F_{\tilde{X}}(s) \geq 1-\epsilon\right\}.$$

Replace $\mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right)$ by $\mathbf{VaR}_{1-\epsilon}\left(\tilde{X}\right)$.



Remarks.

- Asymptotically optimal, i.e., $Z_{\mathbf{VaR}} \to Z$ as $\delta \to 0_+$
- Regular CCP: many existing methods

Inner Approximation: Scenario Approach

$$\mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right) \leq \mathbf{CVaR}_{1}\left(\tilde{X}\right) := \mathrm{ess.} \sup(\tilde{X}).$$

Replace $\mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right)$ by ess. $\sup(\tilde{X})$.

Theorem (Inner Approximation)

$$Z = \left\{ x : \frac{\delta}{\epsilon} \| (x, -1) \|_* + \mathbf{CVaR_{1-\epsilon}} \left[-\widehat{f}(x, \widehat{\boldsymbol{\zeta}}) \right] \le 0 \right\}$$

where $\widehat{f}(x, \boldsymbol{\zeta}) := \max \left\{ \min_{i \in [m]} \left[(a_i^{\zeta})^\top x - b_i^{\zeta} \right], 0 \right\}.$

-∢ ≣⇒

Inner Approximation: Scenario Approach

$$\mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right) \leq \mathbf{CVaR}_{1}\left(\tilde{X}\right) := \mathrm{ess.}\,\mathrm{sup}(\tilde{X}).$$

Replace $\mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right)$ by ess. $\mathrm{sup}(\tilde{X})$.

Theorem (Inner Approximation)

$$Z \supseteq Z_S = \left\{ x : \frac{\delta}{\epsilon} \| (x, -1) \|_* + \text{ess. sup} \left[-\widehat{f}(x, \widetilde{\boldsymbol{\zeta}}) \right] \le 0 \right\}$$

where $\widehat{f}(x, \boldsymbol{\zeta}) := \max \left\{ \min_{i \in [m]} \left[(a_i^{\zeta})^\top x - b_i^{\zeta} \right], 0 \right\}.$

-∢ ≣⇒

Inner Approximation: Scenario Approach Note

$$\mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right) \leq \mathbf{CVaR}_{1}\left(\tilde{X}\right) := \mathrm{ess.}\,\mathrm{sup}(\tilde{X})$$

Replace $\mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right)$ by ess. $\sup(\tilde{X})$.

Theorem (Inner Approximation)

$$Z \supseteq Z_S = \left\{ \boldsymbol{x} \in \mathbb{R}^n : \mathbb{P}_{\tilde{\boldsymbol{\zeta}}} \left\{ \tilde{A}^{\zeta} \boldsymbol{x} \ge \tilde{b}^{\zeta} + \frac{\delta}{\epsilon} \| (\boldsymbol{x}, -1) \|_* \mathbf{e} \right\} = 1 \right\}$$

Inner Approximation: Scenario Approach Note

$$\mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right) \leq \mathbf{CVaR}_{1}\left(\tilde{X}\right) := \mathrm{ess.}\,\mathrm{sup}(\tilde{X})$$

Replace $\mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right)$ by ess. $\sup(\tilde{X})$. Suppose $\tilde{\zeta}$ has finite support $\{(A^{\zeta}, b^{\zeta})\}_{\zeta \in [N]}$.

Theorem (Inner Approximation)

$$Z \supseteq Z_S = \left\{ \boldsymbol{x} \in \mathbb{R}^n : A^{\zeta} \boldsymbol{x} \ge b^{\zeta} + \frac{\delta}{\epsilon} \| (\boldsymbol{x}, -1) \|_* \boldsymbol{e}, \forall \zeta \in [N] \right\}$$

Remarks.

- Z_S is a conic set
- $Z_S \equiv$ the robust scenario approach (Calafiore and Campi, 2006) to regular CCP when the sample size is small

・ 同 ト ・ ヨ ト ・ ヨ ト

Inner Approximation: Scenario Approach

$$\mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right) \leq \mathbf{CVaR}_{1}\left(\tilde{X}\right) := \mathrm{ess.}\,\mathrm{sup}(\tilde{X})$$

Replace $\mathbf{CVaR}_{1-\epsilon}\left(\tilde{X}\right)$ by ess. $\sup(\tilde{X})$. Suppose $\tilde{\zeta}$ has finite support $\{(A^{\zeta}, b^{\zeta})\}_{\zeta \in [N]}$.

Theorem (Inner Approximation)

$$Z \supseteq Z_S = \left\{ \boldsymbol{x} \in \mathbb{R}^n : A^{\zeta} \boldsymbol{x} \ge b^{\zeta} + \frac{\delta}{\epsilon} \| (\boldsymbol{x}, -1) \|_* \boldsymbol{e}, \forall \zeta \in [N] \right\}$$

Remarks.

- Z_S is a conic set
- $Z_S \equiv$ the robust scenario approach (Calafiore and Campi, 2006) to regular CCP when the sample size is small
- Z_S can be improved by other less conservative approximations

Inner Approximation: Worst-case CVaR Note

$$\widehat{f}(x,\boldsymbol{\zeta}) := \max\left\{\min_{i\in[m]} \left[(a_i^{\zeta})^{\top} x - b_i^{\zeta} \right], 0 \right\} \ge \min_{i\in[m]} \left[(a_i^{\zeta})^{\top} x - b_i^{\zeta} \right] := \widehat{g}(x,\boldsymbol{\zeta}),$$

Replace $\widehat{f}(x, \zeta)$ by $\widehat{g}(x, \zeta)$ and by monotonicity of coherent risk measure.

Theorem (Inner Approximation)

$$Z = \left\{ x : \frac{\delta}{\epsilon} \| (x, -1) \|_* + \mathbf{CVaR}_{1-\epsilon} \left[-\widehat{f}(x, \widetilde{\boldsymbol{\zeta}}) \right] \le 0 \right\}$$

where $\widehat{f}(x, \boldsymbol{\zeta}) := \max \left\{ \min_{i \in [m]} \left[(a_i^{\zeta})^\top x - b_i^{\zeta} \right], 0 \right\}.$

Inner Approximation: Worst-case CVaR Note

$$\widehat{f}(x,\boldsymbol{\zeta}) := \max\left\{\min_{i\in[m]}\left[(a_i^{\zeta})^{\top}x - b_i^{\zeta}\right], 0\right\} \ge \min_{i\in[m]}\left[(a_i^{\zeta})^{\top}x - b_i^{\zeta}\right] := \widehat{g}(x,\boldsymbol{\zeta}),$$

Replace $\widehat{f}(x, \zeta)$ by $\widehat{g}(x, \zeta)$ and by monotonicity of coherent risk measure.

Theorem (Inner Approximation)

$$Z \supseteq Z_C = \left\{ x : \frac{\delta}{\epsilon} \| (x, -1) \|_* + \mathbf{CVaR}_{1-\epsilon} \left[-\widehat{g}(x, \widetilde{\boldsymbol{\zeta}}) \right] \le 0 \right\}$$

here $\widehat{g}(x, \boldsymbol{\zeta}) := \min_{i \in [m]} \left[(a_i^{\zeta})^\top x - b_i^{\zeta} \right].$

wł

Inner Approximation: Worst-case CVaR Note

$$\widehat{f}(x,\boldsymbol{\zeta}) := \max\left\{\min_{i\in[m]}\left[(a_i^{\zeta})^{\top}x - b_i^{\zeta}\right], 0\right\} \ge \min_{i\in[m]}\left[(a_i^{\zeta})^{\top}x - b_i^{\zeta}\right] := \widehat{g}(x,\boldsymbol{\zeta}),$$

Replace $\widehat{f}(x, \zeta)$ by $\widehat{g}(x, \zeta)$ and by monotonicity of coherent risk measure.

Theorem (Inner Approximation)

$$Z \supseteq Z_C = \left\{ x : \frac{\delta}{\epsilon} \| (x, -1) \|_* + \mathbf{CVaR}_{1-\epsilon} \left[-\widehat{g}(x, \widetilde{\boldsymbol{\zeta}}) \right] \le 0 \right\}$$

where $\widehat{g}(x, \boldsymbol{\zeta}) := \min_{i \in [m]} \left[(a_i^{\zeta})^\top x - b_i^{\zeta} \right].$

Remarks.

• Z_C is a conic set

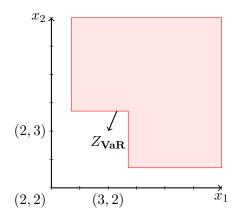
► $Z_C \equiv$ the worst-case **CVaR** approximation of DRCCP-W (Nemirovski and Shapiro, 2006)

Xie (Virginia Tech)

June 26, 2019 13 / 27

Theorem (Model Comparison)

 $Z_S \subseteq Z_C \subseteq Z \subseteq Z_{\mathbf{VaR}}.$



Consider

$$Z = \left\{ x : \inf_{\mathbb{P} \in \mathcal{P}^W} \mathbb{P} \left\{ \begin{array}{c} \tilde{a}_1 \leq x_1 \\ \tilde{a}_2 \leq x_2 \end{array} \right\} \ge 1 - \epsilon \right\}$$

- Risk parameter $\epsilon = 2/3$
- Wasserstein radius $\delta = 1/6$

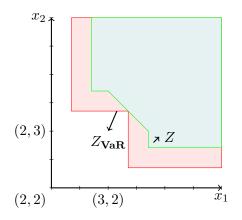
►
$$N = 3$$
 empirical data points:
 $(a_1^1, a_2^1) = (1, 3)$
 $(a_1^2, a_2^2) = (3, 1)$
 $(a_1^3, a_2^3) = (2, 2)$

< ∃ >

Xie (Virginia Tech)

Theorem (Model Comparison)

 $Z_S \subseteq Z_C \subseteq Z \subseteq Z_{\mathbf{VaR}}.$



Consider

$$Z = \left\{ x : \inf_{\mathbb{P} \in \mathcal{P}^W} \mathbb{P} \left\{ \begin{array}{c} \tilde{a}_1 \leq x_1 \\ \tilde{a}_2 \leq x_2 \end{array} \right\} \ge 1 - \epsilon \right\}$$

- Risk parameter $\epsilon = 2/3$
- Wasserstein radius $\delta = 1/6$

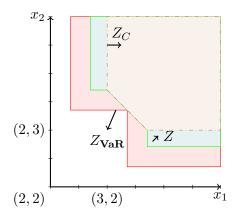
►
$$N = 3$$
 empirical data points:
 $(a_1^1, a_2^1) = (1, 3)$
 $(a_1^2, a_2^2) = (3, 1)$
 $(a_1^3, a_2^3) = (2, 2)$

< ∃ >

Xie (Virginia Tech)

Theorem (Model Comparison)

 $Z_S \subseteq Z_C \subseteq Z \subseteq Z_{\mathbf{VaR}}.$



Consider

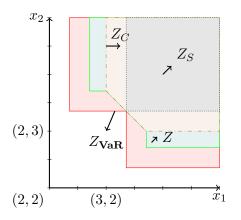
$$Z = \left\{ x : \inf_{\mathbb{P} \in \mathcal{P}^W} \mathbb{P} \left\{ \begin{array}{c} \tilde{a}_1 \leq x_1 \\ \tilde{a}_2 \leq x_2 \end{array} \right\} \ge 1 - \epsilon \right\}$$

- Risk parameter $\epsilon = 2/3$
- Wasserstein radius $\delta = 1/6$

► N = 3 empirical data points: $(a_1^1, a_2^1) = (1, 3)$ $(a_1^2, a_2^2) = (3, 1)$ $(a_1^3, a_2^3) = (2, 2)$

Theorem (Model Comparison)

 $Z_S \subseteq Z_C \subseteq Z \subseteq Z_{\mathbf{VaR}}.$



Consider

$$Z = \left\{ x : \inf_{\mathbb{P} \in \mathcal{P}^W} \mathbb{P} \left\{ \begin{array}{c} \tilde{a}_1 \leq x_1 \\ \tilde{a}_2 \leq x_2 \end{array} \right\} \ge 1 - \epsilon \right\}$$

- Risk parameter $\epsilon = 2/3$
- Wasserstein radius $\delta = 1/6$

► N = 3 empirical data points: $(a_1^1, a_2^1) = (1, 3)$ $(a_1^2, a_2^2) = (3, 1)$ $(a_1^3, a_2^3) = (2, 2)$

Mixed Integer Program Reformulation

A

CVaR Reformulation: Recall

DRCCP-W set

$$Z = \left\{ x : \inf_{\mathbb{P} \in \mathcal{P}^W} \mathbb{P} \left\{ \tilde{A} x \ge \tilde{b} \right\} \ge 1 - \epsilon \right\}.$$

Theorem (Exact Formulation)

$$Z = \left\{ x : \frac{\delta}{\epsilon} \| (x, 1) \|_* + \mathbf{CVaR}_{1-\epsilon} \left[-\widehat{f}(x, \widetilde{\boldsymbol{\zeta}}) \right] \le 0 \right\},$$

where $\widehat{f}(x, \boldsymbol{\zeta}) := \max \left\{ \min_{i \in [m]} \left[(a_i^{\zeta})^\top x - b_i^{\zeta} \right], 0 \right\}.$

38 B

Mixed Integer Program (MIP) Reformulation

DRCCP-W set

$$Z = \left\{ x : \frac{\delta}{\epsilon} \| (x, 1) \|_* + \mathbf{CVaR}_{1-\epsilon} \left[-\widehat{f}(x, \widetilde{\boldsymbol{\zeta}}) \right] \le 0 \right\},$$

where $\widehat{f}(x, \boldsymbol{\zeta}) := \max \left\{ \min_{i \in [m]} \left[(a_i^{\zeta})^\top x - b_i^{\zeta} \right], 0 \right\}.$

AP < B >

Mixed Integer Program (MIP) Reformulation

DRCCP-W set

$$Z = \left\{ x : \frac{\delta}{\epsilon} \| (x, 1) \|_* + \mathbf{CVaR}_{1-\epsilon} \left[-\widehat{f}(x, \widetilde{\boldsymbol{\zeta}}) \right] \le 0 \right\},\$$

where $\widehat{f}(x, \boldsymbol{\zeta}) := \max\left\{\min_{i \in [m]} \left[(a_i^{\zeta})^\top x - b_i^{\zeta} \right], 0 \right\}.$

Linearize outer maximum with binary variable z^ζ ∈ {0,1} and continuous variable w^ζ as f̂(x, ζ) = w^ζ and

$$w^{\zeta} = \begin{cases} 0, & \text{if } \min_{i \in [m]} \left[(a_i^{\zeta})^{\top} x - b_i^{\zeta} \right] \le 0\\ \min_{i \in [m]} \left[(a_i^{\zeta})^{\top} x - b_i^{\zeta} \right], & \text{otherwise} \end{cases}$$

Mixed Integer Program (MIP) Reformulation

DRCCP-W set

$$Z = \left\{ x : \frac{\delta}{\epsilon} \| (x, 1) \|_* + \mathbf{CVaR}_{1-\epsilon} \left[-\widehat{f}(x, \widetilde{\boldsymbol{\zeta}}) \right] \le 0 \right\},\$$

where $\widehat{f}(x, \boldsymbol{\zeta}) := \max\left\{\min_{i \in [m]} \left[(a_i^{\zeta})^\top x - b_i^{\zeta} \right], 0 \right\}.$

▶ Linearize outer maximum with binary variable $z^{\zeta} \in \{0, 1\}$ and continuous variable w^{ζ} as $\widehat{f}(x, \zeta) = w^{\zeta}$ and

$$\begin{split} 0 &\leq w^{\zeta} \leq M^{\zeta} z^{\zeta} \\ w^{\zeta} - M^{\zeta} (1 - z^{\zeta}) \leq (a_i^{\zeta})^{\top} x - b_i^{\zeta}, \forall i \in [m] \end{split}$$

where $M^{\zeta} \geq \max_{x \in Z} \min_{i \in [m]} \left[\left| (a_i^{\zeta})^{\top} x - b_i^{\zeta} \right| \right]$

Mixed Integer Program (MIP) Reformulation DRCCP-W set

$$Z = \left\{ \begin{aligned} & \frac{\delta}{\epsilon} \|(x,1)\|_* + \mathbf{CVaR}_{1-\epsilon} \left[-w^{\zeta} \right] \leq 0 \\ & x: \quad 0 \leq w^{\zeta} \leq M^{\zeta} z^{\zeta}, \forall \zeta \\ & w^{\zeta} - M^{\zeta} (1-z^{\zeta}) \leq (a_i^{\zeta})^{\top} x - b_i^{\zeta}, \forall i \in [m], \forall \zeta \\ & z^{\zeta} \in \{0,1\}, \forall \zeta \end{aligned} \right\}$$

- Empirical distribution is finite-support {(A^ζ, b^ζ)}_{ζ∈[N]} ⇒ set Z is an MIP
- Optimality is guaranteed by the solvers

Mixed Integer Program (MIP) Reformulation DRCCP-W set

$$Z = \left\{ \begin{aligned} & \frac{\delta}{\epsilon} \|(x,1)\|_* + \mathbf{CVaR}_{1-\epsilon} \left[-w^{\zeta} \right] \leq 0 \\ & x: \ 0 \leq w^{\zeta} \leq M^{\zeta} z^{\zeta}, \forall \zeta \\ & w^{\zeta} - M^{\zeta} (1-z^{\zeta}) \leq (a_i^{\zeta})^{\top} x - b_i^{\zeta}, \forall i \in [m], \forall \zeta \\ & z^{\zeta} \in \{0,1\}, \forall \zeta \end{aligned} \right\}$$

- ► Empirical distribution is finite-support {(A^ζ, b^ζ)}_{ζ∈[N]} ⇒ set Z is an MIP
- Optimality is guaranteed by the solvers
- Similar to regular CCP, (1) big M coefficients weaken the formulation,
 (2) number of binary variables grows as sample size N increases
 - □ Both will be addressed for binary DRCCP

Xie (

Binary DRCCP-W and Submodularity

Preliminaries

Binary DRCCP-W set

$$Z = \left\{ x \in \{0, 1\}^n : \frac{\delta}{\epsilon} \| (x, 1) \|_* + \mathbf{CVaR}_{1-\epsilon} \left[-\widehat{f}(x, \widetilde{\zeta}) \right] \le 0 \right\},$$

where $\widehat{f}(x, \zeta) := \min_{i \in [m]} \left\{ \max \left[(a_i^{\zeta})^\top x - b_i^{\zeta}, 0 \right] \right\}.$

イロン イロン イヨン イヨン

Preliminaries

Binary DRCCP-W set

$$Z = \left\{ x \in \{0, 1\}^n : \frac{\delta}{\epsilon} \| (x, 1) \|_* + \mathbf{CVaR}_{1-\epsilon} \left[-\widehat{f}(x, \widetilde{\boldsymbol{\zeta}}) \right] \le 0 \right\},\$$

where
$$\widehat{f}(x, \boldsymbol{\zeta}) := \min_{i \in [m]} \left\{ \max \left[(a_i^{\zeta})^\top x - b_i^{\zeta}, 0 \right] \right\}.$$

Fact 1

Given $d_1 \in \mathbb{R}^n_+, d_2, d_3 \in \mathbb{R}$, function $f(x) = -\max(d_1^\top x + d_2, d_3)$ is submodular over the binary hypercube.

Fact 2 (Edmonds, 1970)

For a submodular function $f : \{0, 1\}^n \to \mathbb{R}$, $\operatorname{conv}(\operatorname{epi}(f)) = \operatorname{conv} \{(x, w) : f(x) \le w, x \in \{0, 1\}^n\} = \text{"extended}$ polymatroid inequalities" (EPI)

The time complexity of separation over EPI is $O(n \log(n))$

Xie (Virginia Tech)

Binary DRCCP-W: Submodular Constrained Reformulation

Binary DRCCP-W set

$$Z = \left\{ x \in \{0, 1\}^n : \frac{\delta}{\epsilon} \| (x, 1) \|_* + \mathbf{CVaR}_{1-\epsilon} \left[-\widehat{f}(x, \widetilde{\boldsymbol{\zeta}}) \right] \le 0 \right\},\$$

where $\widehat{f}(x, \boldsymbol{\zeta}) := \min_{i \in [m]} \left\{ \max \left[(a_i^{\zeta})^{\top} x - b_i^{\zeta}, 0 \right] \right\}.$

-∢ ≣ ≯

Binary DRCCP-W: Submodular Constrained Reformulation

Binary DRCCP-W set

$$Z = \left\{ x \in \{0,1\}^n : \begin{array}{l} \frac{\delta}{\epsilon} \|(x,1)\|_* + \mathbf{CVaR}_{1-\epsilon} \left[w^{\tilde{\zeta}} \right] \le 0 \\ - \max \left[(a_i^{\zeta})^\top x - b_i^{\zeta}, 0 \right] \le w^{\zeta}, \forall i \in [m], \forall \zeta \end{array} \right\}$$

• Let $w^{\zeta} = \widehat{f}(x, \boldsymbol{\zeta})$ and linearize it

Binary DRCCP-W: Submodular Constrained Reformulation

Binary DRCCP-W set

$$Z = \begin{cases} x: \frac{\delta_{\epsilon} \|(x,1)\|_{*} + \mathbf{CVaR}_{1-\epsilon} \left[w^{\tilde{\zeta}}\right] \leq 0\\ -\max\left[(\widehat{a}_{i}^{\zeta,x})^{\top}x + (\widehat{a}_{i}^{\zeta,y})^{\top}y - \widehat{b}_{i}^{\zeta}, 0\right] \leq w^{\zeta}\\ x_{r} + y_{r} = 1, \forall r \in [n],\\ x, y \in \{0,1\}^{n} \end{cases}, \forall i \in [m], \forall \zeta \end{cases}$$

• Let $w^{\zeta} = \widehat{f}(x, \zeta)$ and linearize it

• Let $y_r = 1 - x_r$ and choose vectors $\widehat{a}_i^{\zeta,x}, \widehat{a}_i^{\zeta,y} \in \mathbb{R}^n_+$ such that $(a_i^{\zeta})^\top x - b_i^{\zeta} = (\widehat{a}_i^{\zeta,x})^\top x + (\widehat{a}_i^{\zeta,y})^\top y - \widehat{b}_i^{\zeta}$

Binary DRCCP-W: Submodular Constrained Reformulation

Binary DRCCP-W set

$$Z = \begin{cases} x: \frac{\delta_{\epsilon} \|(x,1)\|_{*} + \mathbf{CVaR}_{1-\epsilon} \left[w^{\tilde{\zeta}}\right] \leq 0\\ -\max\left[(\widehat{a}_{i}^{\zeta,x})^{\top}x + (\widehat{a}_{i}^{\zeta,y})^{\top}y - \widehat{b}_{i}^{\zeta}, 0\right] \leq w^{\zeta}\\ x_{r} + y_{r} = 1, \forall r \in [n],\\ x, y \in \{0,1\}^{n} \end{cases}, \forall i \in [m], \forall \zeta \end{cases}$$

• Let $w^{\zeta} = \widehat{f}(x, \zeta)$ and linearize it

• Let $y_r = 1 - x_r$ and choose vectors $\widehat{a}_i^{\zeta,x}, \widehat{a}_i^{\zeta,y} \in \mathbb{R}^n_+$ such that $(a_i^{\zeta})^\top x - b_i^{\zeta} = (\widehat{a}_i^{\zeta,x})^\top x + (\widehat{a}_i^{\zeta,y})^\top y - \widehat{b}_i^{\zeta}$

► Facts 1 and 2⇒(1) Z is submodular constrained set and (2)separation of these constraints is very efficient

Xie (Virginia Tech)

Numerical Illustration : Setting

Consider distributionally robust chance constrained knapsack problem

$$v^* = \max_{\boldsymbol{x}} \quad \boldsymbol{c}^{\top} \boldsymbol{x},$$

s.t. $\inf_{\mathbb{P} \in \mathcal{P}} \mathbb{P} \left\{ \tilde{a}_i^{\top} \boldsymbol{x} \leq \tilde{b}^i, \forall i \in [m] \right\} \geq 1 - \epsilon.$

• Let
$$n = 20, m = 10$$

► Generate 10 random instances and for each instance, there are *N* = 100 samples.

Results (1): Continuous Knapsack $\boldsymbol{x} \in [0, 1]^n$

	δ	Instances	BigM N	Iodel	VaR Model			CVaR Model		
ϵ	0		Opt.Val	Time	Value	GAP	Time	Value	GAP	Time
		1	54.93	6.11	56.37	2.62%	3.37	54.30	1.14%	0.06
		2	47.69	5.24	48.79	2.29%	2.04	47.16	1.11%	0.05
		3	50.73	4.44	51.43	1.38%	4.43	50.38	0.70%	0.05
		4	53.97	3.61	54.98	1.87%	4.75	52.72	2.32%	0.06
0.05	0.01	5	54.96	6.99	56.44	2.68%	4.20	52.88	3.79%	0.05
0.05	0.01	6	56.03	6.46	57.40	2.44%	2.64	54.97	1.89%	0.05
		7	54.17	6.69	55.04	1.62%	3.68	53.26	1.67%	0.05
		8	55.40	5.81	56.55	2.09%	3.19	54.15	2.26%	0.05
		9	57.63	4.91	58.95	2.29%	4.20	57.07	0.96%	0.05
		10	56.31	4.34	57.15	1.50%	4.71	55.95	0.63%	0.06
	Average			5.46		2.08%	3.72		1.65%	0.05
	0.02	1	53.97	3.94	55.92	3.63%	3.27	53.83	0.24%	0.05
		2	47.05	3.63	48.42	2.92%	3.20	46.79	0.53%	0.04
		3	50.12	5.26	51.02	1.79%	4.48	49.96	0.33%	0.05
		4	52.98	5.14	54.49	2.84%	4.83	52.28	1.33%	0.06
0.05		5	54.10	3.76	55.95	3.41%	3.67	52.44	3.07%	0.05
0.05		6	55.16	6.02	56.90	3.16%	3.33	54.52	1.17%	0.05
		7	53.41	3.91	54.55	2.13%	3.81	52.83	1.08%	0.05
		8	54.47	2.77	56.09	2.98%	3.34	53.71	1.39%	0.06
		9	56.85	3.40	58.44	2.79%	4.00	56.59	0.46%	0.05
		10	55.65	5.47	56.71	1.90%	4.90	55.53	0.22%	0.06
	Average			4.33		2.76%	3.88		0.98%	0.05

・ロ・・ 日本・ ・ 田 ・ ・ 田 ・

Xie (Virginia Tech)

Results (2): Testing Robustness

Instances		DRCCP	Model	CC	Target	
Instances	δ^*	Opt.Val	90-Percentile Violation	Opt.Val	90-Percentile Violation	Violation (ϵ)
1	0.03	53.76	0.042	56.99	0.135	(c)
2	0.02	50.06	0.044	52.67	0.087	
3	0.03	52.37	0.031	55.11	0.153	
4	0.01	56.94	0.039	58.33	0.096	
5	0.02	53.38	0.028	55.89	0.121	
6	0.02	50.25	0.032	52.13	0.096	0.05
7	0.01	59.38	0.047	60.98	0.080	
8	0.03	54.60	0.047	57.77	0.129	
9	0.03	62.51	0.047	66.39	0.118	
10	0.03	52.82	0.036	56.90	0.132	

イロン イロン イヨン イヨン

Results (3): Binary Knapsack $\boldsymbol{x} \in \{0,1\}^n$

ε δ		Instances		Ι	MIP Formulation				Submodular Formulation	
			n		UB	LB	Time	GAP	Opt. Val.	Time
		1	20	10	93	86	3600.0	7.5%	89	49.3
		2	20	10	97	90	3600.0	7.2%	95	30.6
		3	20	10	95	84	3600.0	11.6%	90	387.0
		4	20	10	84	74	3600.0	11.9%	78	275.7
0.05	0.1	5	20	10	87	81	3600.0	6.9%	82	140.4
0.05	0.1	6	20	10	97	85	3600.0	12.4%	88	972.5
		7	20	10	89	75	3600.0	15.7%	84	169.6
		8	20	10	100	88	3600.0	12.0%	96	80.5
		9	20	10	96	78	3600.0	18.8%	92	59.3
		10	20	10	93	93	3542.7	0.0%	93	18.2
	Average						3594.3	10.4%		218.3
	0.1	1	20	10	100	NA	3600.0	NA	92	172.9
		2	20	10	106	NA	3600.0	NA	99	164.0
		3	20	10	105	87	3600.0	17.1%	93	569.1
		4	20	10	92	67	3600.0	27.2%	82	600.5
0.1		5	20	10	95	NA	3600.0	NA	86	332.0
0.1		6	20	10	109	NA	3600.0	NA	94	1852.4
		7	20	10	96	NA	3600.0	NA	88	279.8
		8	20	10	108	82	3600.0	24.1%	100	133.2
		9	20	10	102	NA	3600.0	NA	94	389.3
		10	20	10	103	96	3600.0	6.8%	96	149.7
		Average					3600.0	18.8%		464.3

Image: A math the second se

1

Concluding Remarks

Image: A math a math

Concluding Remarks

- DRCCP-W admits a CVaR interpretation
 - □ Derive inner and outer approximations
- DRCCP-W is mixed integer program representable
 - □ With big-M coefficients and additional binary variables
- Binary DRCCP-W \equiv a submodular constrained optimization problem
 - □ Without big-M coefficients or additional binary variables
- **References**:
 - W. Xie. "On Distributionally Robust Chance Constrained Program with Wasserstein Distance". Available at Optimization Online, 2018.

→ ∃ → < ∃ →</p>

Thank you!

Xie (Virginia Tech)

DRCCP with Wasserstein Distance

 ▲ ■
 ■
 •
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●

イロト イポト イヨト イヨト