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Distributionally Robust Chance Constrained Program
(DRCCP)
Consider DRCCP as

v∗ = min
x

c>x (objective function)

s.t. x ∈ S (deterministic constraints)
e.g., nonnegativity

Ãx ≥ b̃ (uncertain inequalities)

inf
P∈P

P{Ãx ≥ b̃} ≥ 1− ε (chance constraint)

inf
P∈P

P


ã>1 x ≥ b̃1

...
ã>mx ≥ b̃m

 ≥ 1− ε (chance constraint)

where
I ε ∈ (0, 1) is risk parameter

I “Ambiguity Set” P = a family of probability distributions

I m = 1: single DRCCP; m > 1: joint DRCCP
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Wasserstein Ambiguity Set
Wasserstein ambiguity set (Esfahani and Kuhn 2015; Zhao and Guan, 2015;
Gao and Kleywegt, 2016; Blanchet and Murthy, 2016)

PW =
{
P :Wq

(
P,Pζ̃

)
≤ δ
}
,

where Wq

(
P,Pζ̃

)
= Wasserstein distance between probability distribution P

and empirical distribution Pζ̃ .

I Convergence in probability to regular chance constrained program (CCP)

I
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DRCCP with Wasserstein Ambiguity Set
(DRCCP-W): Existing Works

DRCCP-W set

Z =

{
x : inf

P∈PW
P
{
Ãx ≥ b̃

}
≥ 1− ε

}
,

with PW =
{
P :Wq

(
P,Pζ̃

)
≤ δ
}

.

I Hanasusanto et al. (2015) and X. and Ahmed (2017) showed that
DRCCP-W is a biconvex program.

I X. and Ahmed (2017) proposed a bicriteria approximation algorithm for
a special family of DRCCP-W
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DRCCP-W: Summary of Contributions
DRCCP-W set

Z =

{
x : inf

P∈PW
P
{
Ãx ≥ b̃

}
≥ 1− ε

}
.

I DRCCP-W ≡ conditional-value-at-risk (CVaR) constrained optimization

� Develop inner and outer approximations

I DRCCP-W set Z is mixed integer program representable

� With big-M coefficients and additional binary variables

I Binary DRCCP-W set (i.e., S ⊆ {0, 1}n) is submodular constrained

� Without big-M coefficients and additional binary variables
� Solvable by Branch and Cut
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Outline

I CVaR Reformulation and Related Approximations

I Mixed Integer Program Reformulation

I Binary DRCCP-W and Submodularity

I Concluding Remarks

Xie (Virginia Tech) DRCCP with Wasserstein Distance June 26, 2019 6 / 27



CVaR Reformulation and Related Approximations
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CVaR Reformulation
DRCCP-W set

Z =

{
x : inf

P∈PW
P
{
Ãx ≥ b̃

}
≥ 1− ε

}
,

with PW =
{
P :Wq

(
P,Pζ̃

)
≤ δ
}

.

Theorem (Exact Formulation)

Z =

{
x :

δ

ε
+CVaR1−ε

[
−f(x, ζ̃)

]
≤ 0

}
,

where f(x, ζ) := min
i∈[m]

inf
a>i x<bi

‖(ai, bi)− (aζi , b
ζ
i )‖ and

CVaR1−ε

[
X̃
]
= min

γ

{
γ +

1

ε
EP

[
X̃ − γ

]
+

}
.

Proof Idea: (1) strong duality of distributionally robust optimization,
and (2) break down the indicator function.
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CVaR Reformulation: Worst-case Interpretation

Theorem (Exact Formulation)

Z =

{
x :

δ

ε
+CVaR1−ε

[
−f(x, ζ̃)

]
≤ 0

}
,

where f(x, ζ) := min
i∈[m]

inf
a>i x<bi

‖(ai, bi)− (aζi , b
ζ
i )‖

Original empirical samples

Moving these samples to
boundary of violating

constraints

Due to chance constraint,
only limited scenarios can

be moved

I N = 6, ε = 1/3
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CVaR Reformulation: Simplification

DRCCP-W set

Z =

{
x :

δ

ε
+CVaR1−ε

[
−f(x, ζ̃)

]
≤ 0

}
,

where f(x, ζ) := min
i∈[m]

inf
a>i x<bi

‖(ai, bi)− (aζi , b
ζ
i )‖.

I By positive homogeneity of coherent risk measures

I Switch minimax to maximin
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Outer Approximation
Note

CVaR1−ε

(
X̃
)
≥ VaR1−ε

(
X̃
)
:= min

{
s : FX̃(s) ≥ 1− ε

}
.

Replace CVaR1−ε

(
X̃
)

by VaR1−ε

(
X̃
)

.

Theorem (Outer Approximation)

Z =

{
x :

δ

ε
‖(x, 1)‖∗ +CVaR1−ε

[
−f̂(x, ζ̃)

]
≤ 0

}
where f̂(x, ζ) := max

{
min
i∈[m]

[
(aζi )

>x− bζi
]
, 0

}
.

Remarks.

I Asymptotically optimal, i.e., ZVaR → Z as δ → 0+

I Regular CCP: many existing methods
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Inner Approximation: Scenario Approach
Note

CVaR1−ε

(
X̃
)
≤ CVaR1

(
X̃
)
:= ess. sup(X̃).

Replace CVaR1−ε

(
X̃
)

by ess. sup(X̃).

Theorem (Inner Approximation)

Z =

{
x :

δ

ε
‖(x,−1)‖∗ +CVaR1−ε

[
−f̂(x, ζ̃)

]
≤ 0

}
where f̂(x, ζ) := max

{
min
i∈[m]

[
(aζi )

>x− bζi
]
, 0

}
.

Remarks.
I ZS is a conic set

I ZS ≡ the robust scenario approach (Calafiore and Campi, 2006) to
regular CCP when the sample size is small

I ZS can be improved by other less conservative approximations

Xie (Virginia Tech) DRCCP with Wasserstein Distance June 26, 2019 12 / 27



Inner Approximation: Scenario Approach
Note

CVaR1−ε

(
X̃
)
≤ CVaR1

(
X̃
)
:= ess. sup(X̃).

Replace CVaR1−ε

(
X̃
)

by ess. sup(X̃).

Theorem (Inner Approximation)

Z ⊇ ZS =

{
x :

δ

ε
‖(x,−1)‖∗ + ess. sup

[
−f̂(x, ζ̃)

]
≤ 0

}
where f̂(x, ζ) := max

{
min
i∈[m]

[
(aζi )

>x− bζi
]
, 0

}
.

Remarks.
I ZS is a conic set

I ZS ≡ the robust scenario approach (Calafiore and Campi, 2006) to
regular CCP when the sample size is small

I ZS can be improved by other less conservative approximations

Xie (Virginia Tech) DRCCP with Wasserstein Distance June 26, 2019 12 / 27



Inner Approximation: Scenario Approach
Note

CVaR1−ε

(
X̃
)
≤ CVaR1

(
X̃
)
:= ess. sup(X̃).

Replace CVaR1−ε

(
X̃
)

by ess. sup(X̃).

Theorem (Inner Approximation)

Z ⊇ ZS =

{
x ∈ Rn : Pζ̃

{
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Inner Approximation: Worst-case CVaR
Note

f̂(x, ζ) := max

{
min
i∈[m]

[
(aζi )

>x− bζi
]
, 0

}
≥ min

i∈[m]

[
(aζi )

>x− bζi
]
:= ĝ(x, ζ),

Replace f̂(x, ζ) by ĝ(x, ζ) and by monotonicity of coherent risk measure.

Theorem (Inner Approximation)

Z =

{
x :

δ

ε
‖(x,−1)‖∗ +CVaR1−ε

[
−f̂(x, ζ̃)

]
≤ 0

}
where f̂(x, ζ) := max

{
min
i∈[m]

[
(aζi )

>x− bζi
]
, 0

}
.

Remarks.

I ZC is a conic set

I ZC ≡ the worst-case CVaR approximation of DRCCP-W (Nemirovski
and Shapiro, 2006)
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Illustrations of Z,ZVaR, ZC, ZS

Theorem (Model Comparison)

ZS ⊆ ZC ⊆ Z ⊆ ZVaR.

x1

x2

(2, 2) (3, 2)

(2, 3)
ZVaR

Z

ZC
ZS

Consider

Z =

{
x : inf

P∈PW
P
{
ã1 ≤ x1
ã2 ≤ x2

}
≥ 1− ε

}
.

I Risk parameter ε = 2/3

I Wasserstein radius δ = 1/6

I N = 3 empirical data points:
(a11, a

1
2) = (1, 3)

(a21, a
2
2) = (3, 1)

(a31, a
3
2) = (2, 2)
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Mixed Integer Program Reformulation
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CVaR Reformulation: Recall

DRCCP-W set

Z =

{
x : inf

P∈PW
P
{
Ãx ≥ b̃

}
≥ 1− ε

}
.

Theorem (Exact Formulation)

Z =

{
x :

δ

ε
‖(x, 1)‖∗ +CVaR1−ε

[
−f̂(x, ζ̃)

]
≤ 0

}
,

where f̂(x, ζ) := max

{
min
i∈[m]

[
(aζi )

>x− bζi
]
, 0

}
.
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Mixed Integer Program (MIP) Reformulation
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Mixed Integer Program (MIP) Reformulation
DRCCP-W set

Z =

x :

δ

ε
‖(x, 1)‖∗ +CVaR1−ε

[
−wζ

]
≤ 0

0 ≤ wζ ≤M ζzζ , ∀ζ
wζ −M ζ(1− zζ) ≤ (aζi )

>x− bζi ,∀i ∈ [m], ∀ζ
zζ ∈ {0, 1},∀ζ


I Empirical distribution is finite-support {(Aζ , bζ)}ζ∈[N ]⇒ set Z is an

MIP

I Optimality is guaranteed by the solvers

I Similar to regular CCP, (1) big M coefficients weaken the formulation,
(2) number of binary variables grows as sample size N increases

� Both will be addressed for binary DRCCP
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Binary DRCCP-W and Submodularity
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Preliminaries
Binary DRCCP-W set

Z =

{
x ∈ {0, 1}n :

δ

ε
‖(x, 1)‖∗ +CVaR1−ε

[
−f̂(x, ζ̃)

]
≤ 0

}
,

where f̂(x, ζ) := min
i∈[m]

{
max

[
(aζi )

>x− bζi , 0
]}

.

Fact 1

Given d1 ∈ Rn+, d2, d3 ∈ R, function f(x) = −max
(
d>1 x+ d2, d3

)
is

submodular over the binary hypercube.

Fact 2 (Edmonds, 1970)
For a submodular function f : {0, 1}n → R,
conv(epi(f)) = conv {(x,w) : f(x) ≤ w, x ∈ {0, 1}n} = “extended
polymatroid inequalities” (EPI)

The time complexity of separation over EPI is O(n log(n))
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Binary DRCCP-W: Submodular Constrained
Reformulation
Binary DRCCP-W set

Z =

{
x ∈ {0, 1}n :

δ

ε
‖(x, 1)‖∗ +CVaR1−ε

[
−f̂(x, ζ̃)

]
≤ 0

}
,

where f̂(x, ζ) := min
i∈[m]

{
max

[
(aζi )

>x− bζi , 0
]}

.

I Let wζ = f̂(x, ζ) and linearize it

I Let yr = 1− xr and choose vectors âζ,xi , âζ,yi ∈ Rn+ such that

(aζi )
>x− bζi = (âζ,xi )>x+ (âζ,yi )>y − b̂ζi

I Facts 1 and 2⇒(1) Z is submodular constrained set and
(2)separation of these constraints is very efficient
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(aζi )
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Numerical Illustration : Setting

Consider distributionally robust chance constrained knapsack problem

v∗ = max
x

c>x,

s.t. inf
P∈P

P
{
ã>i x ≤ b̃i, ∀i ∈ [m]

}
≥ 1− ε.

I Let n = 20,m = 10

I Generate 10 random instances and for each instance, there are N = 100
samples.
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Results (1): Continuous Knapsack x ∈ [0, 1]n

ε δ Instances BigM Model VaR Model CVaR Model
Opt.Val Time Value GAP Time Value GAP Time

0.05 0.01

1 54.93 6.11 56.37 2.62% 3.37 54.30 1.14% 0.06
2 47.69 5.24 48.79 2.29% 2.04 47.16 1.11% 0.05
3 50.73 4.44 51.43 1.38% 4.43 50.38 0.70% 0.05
4 53.97 3.61 54.98 1.87% 4.75 52.72 2.32% 0.06
5 54.96 6.99 56.44 2.68% 4.20 52.88 3.79% 0.05
6 56.03 6.46 57.40 2.44% 2.64 54.97 1.89% 0.05
7 54.17 6.69 55.04 1.62% 3.68 53.26 1.67% 0.05
8 55.40 5.81 56.55 2.09% 3.19 54.15 2.26% 0.05
9 57.63 4.91 58.95 2.29% 4.20 57.07 0.96% 0.05
10 56.31 4.34 57.15 1.50% 4.71 55.95 0.63% 0.06

Average 5.46 2.08% 3.72 1.65% 0.05

0.05 0.02

1 53.97 3.94 55.92 3.63% 3.27 53.83 0.24% 0.05
2 47.05 3.63 48.42 2.92% 3.20 46.79 0.53% 0.04
3 50.12 5.26 51.02 1.79% 4.48 49.96 0.33% 0.05
4 52.98 5.14 54.49 2.84% 4.83 52.28 1.33% 0.06
5 54.10 3.76 55.95 3.41% 3.67 52.44 3.07% 0.05
6 55.16 6.02 56.90 3.16% 3.33 54.52 1.17% 0.05
7 53.41 3.91 54.55 2.13% 3.81 52.83 1.08% 0.05
8 54.47 2.77 56.09 2.98% 3.34 53.71 1.39% 0.06
9 56.85 3.40 58.44 2.79% 4.00 56.59 0.46% 0.05
10 55.65 5.47 56.71 1.90% 4.90 55.53 0.22% 0.06

Average 4.33 2.76% 3.88 0.98% 0.05

Xie (Virginia Tech) DRCCP with Wasserstein Distance June 26, 2019 22 / 27



Results (2): Testing Robustness

Instances DRCCP Model CCP Model Target
Violation

(ε)δ
∗ Opt.Val 90-Percentile

Violation Opt.Val 90-Percentile
Violation

1 0.03 53.76 0.042 56.99 0.135

0.05

2 0.02 50.06 0.044 52.67 0.087
3 0.03 52.37 0.031 55.11 0.153
4 0.01 56.94 0.039 58.33 0.096
5 0.02 53.38 0.028 55.89 0.121
6 0.02 50.25 0.032 52.13 0.096
7 0.01 59.38 0.047 60.98 0.080
8 0.03 54.60 0.047 57.77 0.129
9 0.03 62.51 0.047 66.39 0.118

10 0.03 52.82 0.036 56.90 0.132
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Results (3): Binary Knapsack x ∈ {0, 1}n

ε δ Instances n I
MIP Formulation Submodular Formulation

UB LB Time GAP Opt. Val. Time

0.05 0.1

1 20 10 93 86 3600.0 7.5% 89 49.3
2 20 10 97 90 3600.0 7.2% 95 30.6
3 20 10 95 84 3600.0 11.6% 90 387.0
4 20 10 84 74 3600.0 11.9% 78 275.7
5 20 10 87 81 3600.0 6.9% 82 140.4
6 20 10 97 85 3600.0 12.4% 88 972.5
7 20 10 89 75 3600.0 15.7% 84 169.6
8 20 10 100 88 3600.0 12.0% 96 80.5
9 20 10 96 78 3600.0 18.8% 92 59.3

10 20 10 93 93 3542.7 0.0% 93 18.2
Average 3594.3 10.4% 218.3

0.1 0.1

1 20 10 100 NA 3600.0 NA 92 172.9
2 20 10 106 NA 3600.0 NA 99 164.0
3 20 10 105 87 3600.0 17.1% 93 569.1
4 20 10 92 67 3600.0 27.2% 82 600.5
5 20 10 95 NA 3600.0 NA 86 332.0
6 20 10 109 NA 3600.0 NA 94 1852.4
7 20 10 96 NA 3600.0 NA 88 279.8
8 20 10 108 82 3600.0 24.1% 100 133.2
9 20 10 102 NA 3600.0 NA 94 389.3

10 20 10 103 96 3600.0 6.8% 96 149.7
Average 3600.0 18.8% 464.3

Xie (Virginia Tech) DRCCP with Wasserstein Distance June 26, 2019 24 / 27



Concluding Remarks
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Concluding Remarks

I DRCCP-W admits a CVaR interpretation

� Derive inner and outer approximations

I DRCCP-W is mixed integer program representable

� With big-M coefficients and additional binary variables

I Binary DRCCP-W ≡ a submodular constrained optimization problem

� Without big-M coefficients or additional binary variables

References:
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Thank you!
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