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Distributionally Robust Chance Constrained Program
(DRCCP)

Consider DRCCP as
v*= min ¢z (objective function)
xT
(deterministic constraints)
st. z€S8 ..
e.g., nonnegativity
Ax >b (uncertain inequalities)
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e.g., nonnegativity
Ei»n; P{Az >b} >1—¢ (chance constraint)
€
where

» ¢ € (0,1) is risk parameter
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Distributionally Robust Chance Constrained Program

(DRCCP)
Consider DRCCP as
v* = min ¢z (objective function)
X
(deterministic constraints)
S.t reS ..
e.g., nonnegativity
lex Z 51
inf P : >1—c¢ (chance constraint)
PP T
Gy > by
where

» ¢ € (0,1) is risk parameter

> “Ambiguity Set” P = a family of probability distributions
» m = 1: single DRCCP; m > 1: joint DRCCP
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Wasserstein Ambiguity Set
Wasserstein ambiguity set (Esfahani and Kuhn 2015; Zhao and Guan, 2015;
Gao and Kleywegt, 2016; Blanchet and Murthy, 2016)

PW — {P:Wq <]P’,]P’C~> < 5},

where W, <}P’, P <~> = Wasserstein distance between probability distribution P
and empirical distribution [P 3

{ Wasserstein Distance ] [ Wasserstein Ambiguity J

d(Py,Py) = i%f Ep[|| &1 — &) True distribution Empirical
distribution

(@1,%2) ~ P, 1, P =Py, 115,P =P,

002 Wasserstein ambiguity set
0 Py = {P:P{§ € E} = ,W,(P,P;) < 6}
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Wasserstein Ambiguity Set

Wasserstein ambiguity set (Esfahani and Kuhn 2015; Zhao and Guan, 2015;
Gao and Kleywegt, 2016; Blanchet and Murthy, 2016)

PW — {P:Wq (P,IPC~> < 5},

where W, <1P’, P 5) = Wasserstein distance between probability distribution P
and empirical distribution P 3

» Convergence in probability to regular chance constrained program (CCP)

>
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DRCCP with Wasserstein Ambiguity Set
(DRCCP-W): Existing Works

DRCCP-W set
Zz{a:: inf P{AwZE}Zl—e},
PePW
with PV = {P: W, (P,P¢) <6 }.

» Hanasusanto et al. (2015) and X. and Ahmed (2017) showed that
DRCCP-W is a biconvex program.

Xie (Virginia Tech)
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DRCCP with Wasserstein Ambiguity Set
(DRCCP-W): Existing Works

DRCCP-W set

Z = {x:PiEr%)fWIP’{Aw Zl;} > 1—6},
with PV = {P: W, (P,P¢) <6 }.

» Hanasusanto et al. (2015) and X. and Ahmed (2017) showed that
DRCCP-W is a biconvex program.

» X. and Ahmed (2017) proposed a bicriteria approximation algorithm for
a special family of DRCCP-W
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DRCCP-W: Summary of Contributions

DRCCP-W set

Z—{x: inf ]P’{Ax>b}>1—e}
PeP

» DRCCP-W = conditional-value-at-risk (CVaR) constrained optimization
0 Develop inner and outer approximations
» DRCCP-W set Z is mixed integer program representable

0 With big-M coefficients and additional binary variables

» Binary DRCCP-W set (i.e., S C {0, 1}") is submodular constrained

0 Without big-M coefficients and additional binary variables
0 Solvable by Branch and Cut
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Outline

» CVaR Reformulation and Related Approximations
» Mixed Integer Program Reformulation

» Binary DRCCP-W and Submodularity

» Concluding Remarks
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CVaR Reformulation and Related Approximations
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CVaR Reformulation
DRCCP-W set

Z:{x: inf }P’{Aac>b}>1—e}
PeP
with PV = {IP’ W, <]P’,]P’C~> < 5}.
Theorem (Exact Formulation)
Z = {x g g + CVaR,_, [—f(x, (N)] < O} ,
where f(z,¢) := min inf ||(a;,b;) — (a a;, l)” and

i1€[m] a z<b;

CVaR,_. [X} = min {’y ¥ %Ep [X - 7} +}.
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CVaR Reformulation
DRCCP-W set

Z:{x: inf P{Am>b}>1—e}
PeP

with PV = {P: W, (P,P¢) <6},
Theorem (Exact Formulation)
Z = {x : g + CVaR,_, [—f(x, CN)] < O} ,

where f(z,¢) := min inf ||(a;,b;) — ( a;, l)H and

i1€[m] a z<b;

CVaR,_. [X} = min {’y ¥ %Ep [X - 7} +}.

Proof Idea: (1) strong duality of distributionally robust optimization,
and (2) break down the indicator function.
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CVaR Reformulation: Worst-case Interpretation
Theorem (Exact Formulation)
7 = {w g g + CVaR;_, [—f(x, CN)] < O} ,

where f(z,¢) := min inf ||(as,b;) — (a$,85)]

i)
i€[m] a z<b; v

Original empirical samples

» N=6,e=1/3

Xie (Virginia Tech) DRCCP with Wasserstein Distance June 26, 2019 9/27



CVaR Reformulation: Worst-case Interpretation
Theorem (Exact Formulation)
Z = {x g g + CVaR,_, [—f(x, CN)] < O} ,

where f(z,¢) := min inf ||(as,b;) — (a$,85)]

;)
i€[m] a z<b; v

$
XREK Rafalelal

Original empirical samples Moving these samples to

boundary of violating
constraints
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CVaR Reformulation: Worst-case Interpretation
Theorem (Exact Formulation)
Z = {x : g + CVaR,_, [—f(x, (N)] < O} ,

where f(z,¢) := min inf ||(as,b;) — (a$,85)]

;)
i€[m] a z<b; v

- & !
febniniak  Talwwlel  eleleles’

Original empirical samples Moving these samples to Due to chance constraint,

boundary of violating only limited scenarios can
constraints be moved

» N=6,e=1/3
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CVaR Reformulation: Simplification

DRCCP-W set

7= {m : g + CVaR,_, [—f(as, cf)] < o} ,

where f(z,¢) := min inf [|(a;,b;) — (a$,00)]).
i€lm] a] z<b;

R
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CVaR Reformulation: Simplification

DRCCP-W set
S _
Z = {x :—+CVaR,_, [—f(:c, C)] < O} ,
€

max {(ag)—raz - bg, O}

where f(z,¢) := min

ic[m] |, 1)«
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CVaR Reformulation: Simplification

DRCCP-W set

Z = {x : gH(x, 1)||, + CVaR;_, [— A(x,f)] < 0} ,

where f(x, ¢) := min max {(ag)Taz - bf, O} .

i€[m)|

» By positive homogeneity of coherent risk measures
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CVaR Reformulation: Simplification

DRCCP-W set

Z-= { @)l + CVaRy [F.0)] < o} ,

where f(z,¢) := max { min [(ag)—rac - bf] ,0}.

i€lm

» By positive homogeneity of coherent risk measures

» Switch minimax to maximin
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Outer Approximation
Note

CVaR,_, (X') > VaR_, (X') = min {3 tF(s) > 1— e} .
Replace CVaR,_. (X) by VaR,_, (X)
Theorem (Outer Approximation)

7= {x )@Vl + CVaRy [F.)] < o}

where f(z,¢) := max { min [(ag)T:E - bﬂ ,0}.

1€[m] !
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Outer Approximation
Note

CVaR,_, (X') > VaR_, (X') = min {3 tF(s) > 1— e} .
Replace CVaR,_. (X) by VaR,_, (X)
Theorem (Outer Approximation)

Z C Zvar = {m : g”(m, 1)]s + VaR;_. [— A(gc,é)} < o}

where f(x, ¢) := max { min [(af)T:E - bﬂ ,0}.

1€[m]
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Outer Approximation

Note

CVaR,_, (X) > VaR;_, (f() := min {s tFg(s)>1— e} .
Replace CVaR,;_. (X) by VaR,_. (X)
Theorem (Outer Approximation)

Z C Zvar = {x : P {A% >0+ 6||(95,—1)H*e} >1-— e}
€
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Outer Approximation
Note
CVaR; . (X) = VaRy (X)) i=min {s: Fg(s) > 1 ¢}.
Replace CVaR,;_. (X) by VaR,_. (X)
Theorem (Outer Approximation)

Z C Zyar = {x : Py {Agaj >0+ 6||(95,—1)H*e} >1- e}
€

Remarks.

» Asymptotically optimal, i.e., Zyvar — Z as 6 — 0

» Regular CCP: many existing methods
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Inner Approximation: Scenario Approach
Note

CVaR;_. (X) < CVaR, (X) = ess. sup(f().
Replace CVaR;_. ()Nf ) by ess. sup(f( ).

Theorem (Inner Approximation)
7= {w : g”(x, ~1)|ls + CVaR,_, [— A(x,é)} < 0}

where f(z,¢) := max { min [(ag)Ta: — bﬂ ,0}.

i€[m]
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Inner Approximation: Scenario Approach
Note

CVaR;_. (X) < CVaR, (X) = ess. sup(f().
Replace CVaR;_. ()Nf ) by ess. sup(f( ).

Theorem (Inner Approximation)

Z2Zs = {33 : g”(l’a —1)||« + ess. sup [— f(=, 5)] < 0}

where f(z,¢) := max { min [(ag)Ta: — bﬂ ,0}.

i€[m]
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Inner Approximation: Scenario Approach
Note ~ ~ )

CVaR_. (X) < CVaR, (X) := ess. sup(X).
Replace CVaR,_ (X ) by ess. sup(X).

Theorem (Inner Approximation)

ZDZs= {zc €ER": P; {A% > b° + 6||(x,—1)H*e} = 1}
€
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Inner Approximation: Scenario Approach
Note

CVaR;_. (X) < CVaR, (X) = ess. sup(f().

Replace CVaR,_ (f( ) by ess. sup(X).
Suppose ¢ has finite support { (AS, bc)}ce[ N]-

Theorem (Inner Approximation)

Z 2D Zg = {:B eR": ASz > bc—l—éH(x,—l)H*e,VC € [N]}
€

Remarks.

» /g is a conic set

» /g = the robust scenario approach (Calafiore and Campi, 2006) to
regular CCP when the sample size is small

Xie (Virginia Tech)
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Inner Approximation: Scenario Approach
Note

CVaR,_. (X) < CVaR; (X) = ess. sup(X).
Replace CVaR,_ (f( ) by ess. sup(X).
Suppose ¢ has finite support { (AS, bc)}CG[ N]-
Theorem (Inner Approximation)

b
Zgzsz{meRn:AszbCJr\
€

(&, 1) o0, V¢ € [N]}

Remarks.

» /g is a conic set

» /g = the robust scenario approach (Calafiore and Campi, 2006) to
regular CCP when the sample size is small

» Zg can be improved by other less conservative approximations
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Inner Approximation: Worst-case CVaR
Note

f(m, ¢) = max{min [(af)—l—x - bﬂ ,0} > min [(af)—l—x - bﬂ =g(x,Q),
i€[m] i€[m]

-~

Replace f(x, ) by g(z, ¢) and by monotonicity of coherent risk measure.
Theorem (Inner Approximation)

7= {a: : g”(:c, ~1)||s + CVaR,_, [— fla, c’)} < 0}

where f(:v, ¢) := max { min [(af)Tm - bﬂ ,0}.

1€[m]
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Inner Approximation: Worst-case CVaR
Note

J(2,¢) := max { min [(af) Tz — b ,0} > min |(af)Te - | == §(, ),
i€[m) i€[m]

Replace f(x, () by g(z, ¢) and by monotonicity of coherent risk measure.

Theorem (Inner Approximation)
7D Ty = {x : g”(x, ~1)||s + CVaR_, [-g@:,é)} < 0}

where g(z, {) := min [(ag)Tx - bf]
1€[m)|
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Inner Approximation: Worst-case CVaR
Note

f(@,¢) == max { min {(af) @ — o] ,o} > min |(af) Tz - 8] := §(z, ),
i€[m] i€[m]

~

Replace f(x, () by g(z, ¢) and by monotonicity of coherent risk measure.

Theorem (Inner Approximation)
7D Ty = {ac : g”(x, ~1)||s + CVaR_, [-g@:,é)} < 0}

where g(z, {) := min [(ag)Tm - bf]
1€[m)|

Remarks.

» Zc is a conic set

» Zc = the worst-case CVaR approximation of DRCCP-W (Nemirovski
and Shapiro, 2006)
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Mlustrations of Z, Zv.r, Zc, Zg

Theorem (Model Comparison)
Zs C Zc C Z C Zvar- J

Consider
a; <
Z:{x: inf IP’{ 6}1_331 }21—6}
PePW az < x2

» Risk parameter € = 2/3

T2 x

/ » Wasserstein radius § = 1/6
(2,3)
Zvar » N = 3 empirical data points:
(a1,a3) = (1,3)
(a,a3) = (3,1)
(2,2) (3,2) 1 (af,a3) = (2,2)
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Mlustrations of Z, Zv.r, Zc, Zg

Theorem (Model Comparison)
Zs C Zc C Z C Zvar- J

Consider
a; <
Z:{x: inf IP’{ 6}1_331 }21—6}
PePW az < x2

» Risk parameter € = 2/3

T2 x

» Wasserstein radius 6 = 1/6
/
(2,3)
Zvar rZ » N = 3 empirical data points:
Eai,aé% = 51,33
al,a2 = 3,].
(2,2) (3,2) 1 (af,a3) = (2,2)
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Mlustrations of Z, Zv.r, Zc, Zg

Theorem (Model Comparison)
Zs € Zc € Z C Zvar. J
Consider
T2 x
Zc Z:{x: inf IP’{ ?1§x1}21—6}
PePW az < x2

» Risk parameter € = 2/3

» Wasserstein radius § = 1/6

(2,3)
» N = 3 empirical data points:
(ay, a3) = (1,3)
(af,a3) = (3,1)
(2,2) (3,2) & (af,a3) = (2,2)
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Mlustrations of Z, Zv.r, Zc, Zg

Theorem (Model Comparison)
Zs C Zc C Z C Zvar- J
Consider
T2 x
:ZC _ o a1 < xq -1 }
I = Z 7 {x.Pé]%fWIP’{ &2§x2}_1 €
s

» Risk parameter € = 2/3

R » Wasserstein radius § = 1/6

ZvaR \’Z— » N = 3 empirical data points:
(a17a2) (1,3)
(af,a3) = (3,1)
1 (af,a3) = (2,2)

DRCCP with Wasserstein Distance June 26, 2019 14727
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Mixed Integer Program Reformulation
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CVaR Reformulation: Recall

DRCCP-W set

Z:{x: inf ]P’{flacZE}Zl—e}.
PEPW

Theorem (Exact Formulation)

5
7= {x : 2@, DIl + CVaRy_ [—

1€[m]

where f(x, ¢) := max { min [(af)Tx — bﬂ ,0}.
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Mixed Integer Program (MIP) Reformulation

DRCCP-W set

Z = {x : gH(x, 1)||s + CVaR,_, [— A(x,(:)] < 0} ,

where f(z,¢) := max { min [(af)Tm - bﬂ ,0}.

1€[m]

Xie (Virginia Tech) DRCCP with Wasserstein Distance June 26, 2019
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Mixed Integer Program (MIP) Reformulation

DRCCP-W set

~

Z = {x : g”(x, 1)||s + CVaR_, [—f(x,é)] < 0} ,

where f(x, ¢) := max { min [(af)T:c - bﬂ ,0}.
1€[m]
> Linearize outer maximum with binary variable 2¢ € {0, 1} and
continuous variable w® as f(z,¢) = w® and
0, if min [(ag)T:c — bf} <0
i€[m]

min {(a,f)Ta: — bﬂ ,  otherwise
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Mixed Integer Program (MIP) Reformulation
DRCCP-W set

z= { el + CVaRs 7. ) < o},

where f(z, ¢) := max { min [(ag)T:r — bﬂ ,0}.

1€[m]

» Linearize outer maximum with binary variable 2¢ € {0, 1} and
continuous variable w® as f(z,¢) = w® and
0< w® <M €,
wé — MS(1—2%) < (a$) Tz — b8, Vi € [m]

(2

where M°¢ > max min H(a-c)—rx — b
TEZ i€[m)]

Xie (Virginia Tech) DRCCP with Wasserstein Distance June 26, 2019
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Mixed Integer Program (MIP) Reformulation

DRCCP-W set
g ¢
“ll@ Dl + CVaR_. [—w ] <0
g7—d . 0<ws < M2,V
ws — MS(1 —2%) < (a$) T — b, Vi € [m], V¢
25 € {0,1},¥¢

» Empirical distribution is finite-support {(A°, bc)}ce[ N] = set Z is an
MIP

» Optimality is guaranteed by the solvers
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Mixed Integer Program (MIP) Reformulation

DRCCP-W set
g ¢
“ll@ Dl + CVaR_. [—w ] <0
ws — MS(1 —2%) < (a$) T — b, Vi € [m], V¢
25 € {0,1},¥¢

» Empirical distribution is finite-support {(A°, bC)}CE[ N] = set Z is an
MIP
» Optimality is guaranteed by the solvers

» Similar to regular CCP, (1) big M coefficients weaken the formulation,
(2) number of binary variables grows as sample size N increases

0 Both will be addressed for binary DRCCP
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Binary DRCCP-W and Submodularity
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Preliminaries
Binary DRCCP-W set

0
al

Z = {x € {0,1}": =||(z,1)||« + CVaR;_. [—f(a:, é)] < 0} ,

where f(.r, ¢) := min {max [(aC)T:c - bic, 0} }

1€[m)]

i
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Preliminaries
Binary DRCCP-W set

) -
7= {m € {0.1}": 2| (, 1) + CVaRi_. [—f(a:,c)] < o} ,
where f(x, ¢) := min {max [(af)T:v - bic, 0} }

1€[m)]
Fact 1
Given d; € R, dy, ds € R, function f(x) = — max (de tdo, d3) is
submodular over the binary hypercube.

Fact 2 (Edmonds, 1970)

For a submodular function f : {0,1}" — R,
conv(epi(f)) = conv {(z,w) : f(x) <w,z € {0,1}"} = “extended
polymatroid inequalities” (EPI)

The time complexity of separation over EPI is O(n log(n))
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Binary DRCCP-W: Submodular Constrained
Reformulation
Binary DRCCP-W set

7 — {x e {0,1}" : §||(a;, )|l + CVaR,_. [— f(z, 5)] < o} :

~

where f(z,¢) = lIél[lmn] {rnax [(ag)Tx - bg, 0} }

Xie (Virginia Tech)
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Binary DRCCP-W: Submodular Constrained

Reformulation
Binary DRCCP-W set

xz,1)||« + CVaR_, <0
s ey < TERN o | ]C
<

— max [( Ty bg,o} < wS, Vi € [m],¥¢

» Letw® = f(x,¢) and linearize it
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Binary DRCCP-W: Submodular Constrained

Reformulation
Binary DRCCP-W set

2|z 1)]l. + CVaR, wt] <0
€

7 —={ r: |—max (AC’ ) x+(a§’y)Ty—3§,0} <wS|Vie [m], V¢

T +yr = 1,¥r € [n],
z,y € {0,1}"

» Let w’ = jA‘(:n, ¢) and linearize it

» Lety, = 1 — z, and choose vectors ac - fy € R} such that

(af) Tz —bf = @") "+ @)y - 0

(3
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Binary DRCCP-W: Submodular Constrained

Reformulation
Binary DRCCP-W set

2|z 1)]l. + CVaR, wt] <0
€

/A —max(g’) x+(<y) —35,0}§wC,Vi€[m],VC

T +yr = 1,¥r € [n],
z,y € {0,1}"

» Let w’ = jA‘(:L', ¢) and linearize it

» Lety, = 1 — x, and choose vectors aC’ , fy € R} such that

(af) Tz —bf = @") "+ @)y - 0

(3

» Facts 1 and 2=-(1) Z is submodular constrained set and
(2)separation of these constraints is very efficient

Xie (Virginia Tech) DRCCP with Wasserstein Distance June 26, 2019
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Numerical Illustration : Setting

Consider distributionally robust chance constrained knapsack problem

v* =max ¢z,
xTr
s.t.  inf P{&Ix <b,Vie [m]} >1—e
PEP

» Letn =20,m =10

» Generate 10 random instances and for each instance, there are N = 100
samples.
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Results (1): Continuous Knapsack x € [0, 1]"

. 5 Instances BigM Model VaR Model CVaR Model

Opt.Val Time | Value = GAP Time | Value GAP Time

1 5493  6.11 | 56.37 2.62% 3.37 | 5430 1.14% 0.06

2 47.69 524 | 4879 229% 2.04 |47.16 1.11% 0.05

3 50.73 444 | 5143 138% 4.43 |50.38 0.70% 0.05

4 5397 3.61 | 5498 187% 4.75 |52.72 2.32% 0.06

005 001 5 5496 6.99 | 5644 2.68% 4.20 |52.88 3.79% 0.05
6 56.03 6.46 | 5740 244% 2.64 | 5497 1.89% 0.05

7 54.17  6.69 | 55.04 1.62% 3.68 | 53.26 1.67% 0.05

8 5540 5.81 |56.55 2.09% 3.19 | 54.15 2.26% 0.05

9 57.63 491 | 5895 229% 4.20 |57.07 0.96% 0.05

10 5631 434 | 57.15 150% 4.71 | 5595 0.63% 0.06

Average 5.46 2.08% 3.72 1.65% 0.05

1 5397 394 | 5592 3.63% 3.27 |53.83 0.24% 0.05

2 47.05 3.63 | 4842 2.92% 3.20 | 46.79 0.53% 0.04

3 50.12 526 | 51.02 1.79% 4.48 |49.96 0.33% 0.05

4 5298 5.14 | 5449 2.84% 4.83 |52.28 1.33% 0.06

0.05 0.02 5 5410 3.76 | 5595 3.41% 3.67 | 5244 3.07% 0.05
6 55.16  6.02 | 56.90 3.16% 3.33 | 54.52 1.17% 0.05

7 5341 391 | 5455 2.13% 3.81 |52.83 1.08% 0.05

8 54.47 277 | 56.09 298% 3.34 | 53.71 1.39% 0.06

9 56.85 340 | 5844 279% 4.00 | 56.59 0.46% 0.05

10 55.65 547 |56.71 190% 4.90 | 55.53 0.22% 0.06

Average 4.33 2.76% 3.88 0.98% 0.05
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Results (2): Testing Robustness

Instances DRCCP l\élgiel - CCP91(\)/Icl;del . Vifafgf:t
* -Percentile -Percentile 10lation

67 Opt.Val RN OrtVel | =\ ation ©

T (003 5376 0.042 56.99 0.135

2 |002 5006 0.044 5267 0.087

31003 5237 0.031 55.11 0.153

4 |00l 5694 0.039 58.33 0.096

5 |o002 5338 0.028 55.89 0.121

6 |002 5025 0.032 52.13 0.096 0.05

7 |00l 5938 0.047 60.98 0.080

8 003 5460 0.047 57.77 0.129

9 |003 6251 0.047 66.39 0.118

10 |003 5282 0.036 56.90 0.132
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Results (3): Binary Knapsack & € {0, 1}"

. 5 Instances n I MIP Fonpulation Submodular Forrr}ulation
UB LB Time GAP | Opt. Val Time
1 20 10| 93 86 3600.0 7.5% 89 49.3
2 20 10| 97 90 3600.0 7.2% 95 30.6
3 20 10| 95 84 3600.0 11.6% 90 387.0
4 20 10| 84 74 3600.0 11.9% 78 275.7
005 01 5 20 10| 87 81 3600.0 6.9% 82 140.4
6 20 10| 97 85 3600.0 12.4% 88 972.5
7 20 10| 89 75 3600.0 15.7% 84 169.6
8 20 10| 100 88 3600.0 12.0% 96 80.5
9 20 10| 96 78 3600.0 18.8% 92 59.3
10 20 10| 93 93 3542.7 0.0% 93 18.2
Average 35943 10.4% 218.3
1 20 10| 100 NA 3600.0 NA 92 172.9
2 20 10| 106 NA 3600.0 NA 99 164.0
3 20 10| 105 87 3600.0 17.1% 93 569.1
4 20 10| 92 67 3600.0 27.2% 82 600.5
01 01 5 20 10| 95 NA 3600.0 NA 86 332.0
6 20 10| 109 NA 3600.0 NA 94 1852.4
7 20 10| 96 NA 3600.0 NA 88 279.8
8 20 10| 108 82 3600.0 24.1% 100 133.2
9 20 10| 102 NA 3600.0 NA 94 389.3
10 20 10| 103 96 3600.0 6.8% 96 149.7
Average 3600.0 18.8% 464.3
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Concluding Remarks
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Concluding Remarks

» DRCCP-W admits a CVaR interpretation
O Derive inner and outer approximations

» DRCCP-W is mixed integer program representable
0 With big-M coefficients and additional binary variables

» Binary DRCCP-W = a submodular constrained optimization problem
0 Without big-M coefficients or additional binary variables
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Thank you!
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